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J ,  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I K  G R E A T  B R I T A I N  

Nucleon and cluster emission in electron scattering 

A. WATT? 
Department of Natural Philosophy, University of Aberdeen 
MS. received 25th September 1968, in revised form 3rd April 1969 

Abstract. The electrodisintegration of nuclei into two fragments is investigated, and 
formulae are derived for the cross section. I t  is assumed that the nucleus in its initial 
state is made up of the two clusters interacting with each other to form a bound state. 
The theory is applied to the problem of single-nucleon emission in order to investigate 
the importance of indirect processes in the quasi-elastic peak. These are found to 
reduce the cross section by a few per cent, which is not enough to giye agreement with 
experiment. 

1. Introduction 

ture. The  theory of single-nucleon emission has been considered in some detail (Czyk 
1963, Czyi and Gottfried 1963, de Forest 1967, de Forest and Walecka 1966, Murray and 
Strachan 1965, Strachan and Watt 1969, to be referred to as I), but agreement with exper- 
iment is not yet very good. Czyz managed to obtain reasonable agreement with experiment, 
but only by using a Fermi gas model for 12C, which, as he points out, is rather unsatis- 
factory. Also the Fermi gas model failed to explain the quasi-elastic scattering from 208Bi 
(Isabelle and Kendall1964), where one would expect it to work well. In  I, the shape of the 
quasi-elastic spectrum could be fitted by using only the direct electron-nucleon interaction, 
but the calculated magnitude of the cross section was about twice the experimental magni- 
tude. From sum-rule considerations (McVoy and Van Hove 1962) we believe that indirect 
processes may interfere with the direct reaction to reduce the cross section. 

There has also been some interest recently in processes in which clusters of nucleons, 
for example deuterons, are ejected from nuclei by the scattering of electrons (Griffy et al. 
1966). However, the theory of cluster emission requires some clarification. Indirect effects 
will be even more important in cluster emission than in single-nucleon emission, since the 
relative importance of direct and indirect effects is determined by the ratio of the masses of 
the fragments. If, as suggested above, the indirect terms are appreciable in single-nucleon 
emission, then their neglect in the emission of larger fragments could be serious. 

I n  this paper our object is to give a better description of the quasi-elastic peak in 
electron scattering. This is largely due to the direct knock-out of a single nucleon, but we 
wish to consider quantitatively the effects of including indirect reactions. Since nucleon 
emission is a special case of cluster emission, methods will be developed to describe dis- 
integration into two arbitrary fragments. These methods will finally be applied to the 
problem of single-nucleon emission. As in I, we consider the quasi-elastic peak in 12C. 

2. Kinematics and nuclear model 
Suppose that the nucleus disintegrates into two fragments of A and B nucleons. They 

will be referred to as A and B respectively. Let .We, AtB, RA, RB be the masses and centre- 
of-mass coordinates of A and B. Then we can write 

Electrodisintegration is becoming increasingly important in the study of nuclear struc 

Let the coordinate variable for nucleon w. of A be ra, w. E -4, and for nucleon 13 of B be rg ,  

559 

7 Now at Department of Natural Philosophy, University of Glasgow. 



560 A. Watt 

/3 E B, and let 
x, = r a -  R A  

xq = rq-RB, 

Then sa, xB are coordinates measured relative to the centre of mass of A, B and 

2 x, = X p  = 0. 
CEA DEB 

Let p a ,  PA, p ,  P and x, be momentum operators conjugate to r,, R A ,  r, R and x,, respec- 
tively, and let p be the reduced mass: 

Then 

1 A 
x , =  p --p -- ( a A A ) A - l  

and 

The  kinetic energy operator may be transformed into 

If it is assumed that the nucleons interact through a two-body potential If(+'), the total 
potential energy may be split up as follows: 

v =  $ 2  V(ij) = 42 V(ij)+& CV(i j )+ c V(ij) (7) 

= V A f  VBf V ( y ) f H i n t *  (8) 

i f l  LieA i,lEB i€A 
i # j  i # i  i E B  

We assume that the interaction between A and B can be represented by a convenient 
central potential V(Y) and a residual part Hint. The Hamiltonian for the nuclear system 
may then be written 

D2 

where 
A2 

We assume that any state of the nuclear system, whether before or after disintegration, 
may be written as a linear combination of the basic states 

exP( ik .R) lY) lm)  (11) 
where I y ) ,  1.) and I P )  are eigenstates of No, HA and H B .  We shall suppose that Hint 
may be neglected in the final state, so that we may describe the system after disintegration 
by the single ket 

Before disintegration we describe the system by the linear combination 
exp(iq.R) IYf ) 1 %  ) IPf ). (12) 
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where we have supposed the initial nucleus to be at rest in the laboratory. The  coeffi- 
cients cagy could be obtained by diagonalizing H in the space spanned by kets like (11). 

3. The interaction Hamiltonian 

tional to (McVoy and Van Hove 1962)t 
The  Hamiltonian describing the interaction between electron and nucleus is propor- 

+ ia.- P3 (q x aj> exp(iq.r,)], 
2m 

Here e,, piaj and m are the charge, magnetic moment, spin and mass of the j th  nucleon, 
a,, xy, E ,  are Dirac matrices for the electron, and qp2 = q2.-w2, where q and o are the 
momentum and energy transferred from the electron, respectively. Taking matrix elements 
between plane-wave eigenstates of P gives a momentum &function, which we omit, and 
replaces P by 0 if the nucleus is at rest in the laboratory. Writing 

exp(iq.x,)(xj} 
2m 

and a similar expression for IfB’, we find 

+-a.qexp(-iq.r&)] 1 . 
21v  

The expression for HAr is the operator one would use to describe the interaction of an 
electron with a ‘nucleus’ of A particles, after transformation with the Gartenhaus-Schwartz 
transformation (McVoy and Van Hove 1962). 

Equation (16) is of interest in situations other than the present one, and can be used in a 
suitably modified form in models in which the nucleus is supposed to be made up from two 
different types of particles, as in the Goldhaber-Teller (1948) model, or in more complicated 
situations (Raphael et al. 1966). It is of interest to note that this Hamiltonian can cause 
disintegration into two fragments together with a change in state of these fragments. 
I n  particular, it allows emission of more than one nucleon. 

The  usual procedure for expanding in multipoles (de Forest and Walecka 1966) cannot 
now be carried out because the operator is not a sum of single-particle operators. However, 
it is possible to adopt a procedure similar to that used before. We start off by expressing 
the various terms in H’ as sums of tensor operators in standard fashion; this gives an 
expression containing products of pairs of tensor operators. These are then combined into 

t We use natural units f i  = c = 1, U = e a / h  = 1/137. 
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single tensor operators, and the resulting expression resembles the simpler form used in 
the direct interaction picture. The  Wigner-Eckart theorem (Edmonds 1957) may then be 
used on the matrix elements of the operator. 

4. Expansion in multipoles 
We start off by finding an expansion for HA’ of equation (15). As mentioned above, 

HA’ is just the operator describing the scattering of an electron from a ‘nucleus’ A, which 
has been considered in considerable detail in the past (de Forest and Walecka 1966), and 
so the problem would appear to be solved. However, HA’ is related to the operator usually 
employed by the Gartenhaus-Schwartz transformation (McVoy and Van Hove 1962), and 
the form (15) is hardly ever used in discussing scattering processes in which the nucleus is 
left in its ground state or in a low-lying excited state. What is done (de Forest and Walecka 
1566) is to use the untransformed operator (equation (14), summed only over j  E A) and to  
make an adjustment to the matrix elements to allow for the motion of the centre of mass 
(Tassie and Barker 1958). This procedure is well established for the harmonic oscillator 
model, and is very convenient to use, since it avoids the A-body operators contained in (15). 
The  usual expansion in multipoles (Willey 1563, de Forest and Walecka 1966) is still valid 
for HA’ of (15), but in practice it may be more convenient to revert to (14) and make the 
adjustment for the motion of the centre of mass at the end of the calculation. 

We prefer to expand (15) as it stands, and obtain 

HA’ = Z [ Y * ( A  Im q)  Tlm(14) -(I) + a 4  yI:(m12,’(A) +a. Yl:(G)e(A) 
lm 

+ a . k  x Y 1 7 m ( m o ( 4 1  ( I f )  
where is a unit vector in the direction of q and Y I I m  is a vector spherical harmonic 
(Edmonds 1957). Explicit forms for the tensor operators T, ,  may be obtained from 
Willey (1963) or from de Forest and Walecka (1966). For example, 

Returning to equation (16), we next write 

where 

Finally, the remaining parts of equation (16) are written 

2 e j  exp(iq.xj) = 2 Y~;(~~)T;;)(A). (22). 
j e A  l m  

Tensors operating on internal coordinates of A are labelled T(A), while those operating 
on the relative coordinate r but containing A in a minor way, for example as in (20), are 
written T(a). Operators ~$,~)[B),T$)(b) etc. are defined in a similar way. 
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Using the above expressions, we may rewrite equation (16) as follows: 

563 

+u.q x Y,T,T;;\~)] 

+ a similar expression with A, a replaced by B, b 

Rearranging terms, we have 

Defining new tensor operators TYj depending on L,  1 but not on -44, m by 

~ l Z j : ( ~ z )  = 2 ( L M L ~ ~ L ~ x ~ ) [ T ~ ~ ( ~ ) T : ~ ( A ) +  ...I (25) 
M,m 

where the terms in square brackets are written in full in equation (24)) we obtain, since 

4 + a. q Y:M YTm TFj( Ll) + a. YZbTY,"lm Ti:)( Ll) 

+cr. q x Y:~Y:~T?;(LZ)). (27) 

(LMlmJLZXp) is a Clebsch-Gordan coefficient and M m  -,U A ) is a 3-jsymbol as defined by 
Edmonds (1957). Also 

The  summations over M, m may be performed as follows, where we use several results 
given by Edmonds (1957): 

( 
= (2Xf 1)ll2. 

Mm M m - p  
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Using the 6-j symbol (f j2 jl'] as defined by Edmonds (1957), the other result is 
3 3 323 

Hence expression (27) becomes 

Since 

4 9 Yim 

it is clear from (27) that the vector 

is perpendicular to q,  Hence we expect the second part of (28), a. Znt. . .  to give eventually 
a transverse form factor, while the first part of (28), which contains no transverse terms, will 
give a longitudinal form factor. 

We shall consider in detail only the part of (28) which contains T;,','(Ll), and this we 
shall call 0. If we take matrix elements of 0 between nuclear states of initial and final 
angular momentum Ji, Jf with x components hfi, &If respectively, and electron spin states 
IS,), p f ) )  we find 

(Jfllf,l  IJi) is a reduced matrix element, and the Wigner-Eckart theorem has been used. 
We now sum the square of the modulus of this matrix element over Mi) ;Yr, and we obtain 

It is now possible to sum over the electron spins using the usual trace methods, and also to 
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x ( J ~ I  I T , ' l ) ( ~ l )  I IJ iXJfl  1 Fi1)(~'lf)1 I J ~ ) *  (31) 

where 0 is the angle through which the electron is scattered. 
The  remainder of the operator H' of equation (28) may be dealt with in a similar way, 

but the algebra is more difficult than that given above. In  addition to the above sum over p, 
others of a similar type are required. The  results are given in the appendix. 

Writing 

TA(L1) = (Jf I I TA(Lz) 1 IJi) (32) 
we obtain finally 

i.' A" 

x (T,'3)(L1)T,'3)(L'1')* 

x (-)"'30 

I n  order to eliminate terms of the type TA'3)*T1,(4) it is necessary to use the relations 

Tkl)(Ll)* = ( - ) J l - J f + L + l p  2" (1) ( L 4  

T,'Z)(LZ)* = ( - ) J ~ - J ~ - L T I  T,'"( LZ) 
(34) TiV(3)(Ll)* = (_)Jj-J ,+L+i- lT ( 3 )  

1. (LU 
T , ' 4 ' ( 4 *  = ( - ) J , - J , + L - l + l  T L ~ ~ L I ) .  

These may be easily derived from the definitions (25 ) ,  and the known properties of the 
operators TIZ(A) etc. (de Forest and Walecka 1966). 

Expression (33) has the form 

cos2 $8(A + B tan2 40) (35) 

as it must, since it is appropriate for an experiment in which only the scattered electron is 
detected (de Forest and Walecka 1966, equation 2.13). 
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I t  is possible to combine the sum T:,i)(LL) + wT',2,'(Ll) into a single operator, so that we 
may write 

5. Summations over final-state quantum numbers 
The next step is to express the reduced matrix elements T,(L1) as products of reduced 

matrix elements of operators operating on the various parts of the nuclear system, and then 
to sum over the unobserved quantum numbers. 

Before proceeding it is necessary to have a definite scheme for coupling the individual 
angular momenta to Ji and Jf, since the phases of the reduced matrix elements depend on 
the order of coupling. 

We use {JA, jA, ...> to denote possible values of the angular momentum of -1 in the 
initial state. These are coupled to the set {JB, jB, ,..I for B to form { x ,  U,  ...I, thus: 

U = JA+JB 
a = J A + J ~ ,  u1 = j , + ~ ~ ,  ... . (39) 

The  set { x ,  U,  ...I are then coupled to the possible values of the relative angular momentum 
{J,  J, ...} to form Ji according to 

Ji = u + J  
Ji = U +  J ,  ... . . .  

In  the final state we suppose that the clusters have definite angular momenta JA', JB' 
and that they are coupled to x ' ,  which is then coupled to the relative part J' to give Jf. 
That  is, 

Unobserved final-state quantum numbers are Jf, K', J ' ,  and it is therefore necessary to 
sum over these. 

A typical basic state of the system can be represented by the ket ~ Y A J A Y B J B x ;  7.7; 1, j, 
and the initial state of the nucleus may be represented by a linear combination of such kets. 
The  final state may be represented by a single such ket provided that we sum over the 
unobserved quantum numbers given above. At present, the additional quantum numbers 
yA, yB, y will be ignored, and we consider for simplicity only one ket in the initial state. 

From here on only the first term of equation (33), summed over Jf, x ' ,  J ' ,  will be 
considered, and we write it as 

a' = JA' +JH', Jf = a' + J ' .  (41) 

where 
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The  reduced matrix element TA(I)(L,  1) becomes (Edmonds 1957) 

x a similar expression with J A  -+ jA, J B  -+ JB, CI -+ ci, J +J I . ( (43) 

Using the definition of the 9-j symbol as a sum of 6-j symbols, and the Elliott-Biedenharn 
identity (Edmonds 1957) the summations over Jf and h may be performed, giving 

Jr ,% 
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The sum over I’ in equation (45) may now be carried out, and we finally obtain 

( - ) J,’ t J,’ - J ,  - iA (: TA JB’\ , JA 

k J A  I’ I 

x ( - ) J B ’ - ~ - & - J A ’ ( :  . JA’) (“ JB j;] 
JB k JB’ I’ 

+ Tl(’)(A; JA’JA)*TL(’)(a; J’J)*T[,(’)(B; JB’jB)TL (‘)(b; J’.@JBIJB8JAljA 

x ( - ) ~ ~ A ‘ + ~ B ‘ ~ ~ + ~ B  1; J; 4) d! J A ’  J B  

+ T,(’)( B ; JB’JB)* TL’)( b; J’J)* Ti,(’)( A ;  JA’jA) TL,(’)( a;  J’j)8jA,jA8jBijB 

( -)2J,’ + J ,  + JB‘ + [i ; $1 1. (47) 

Evaluation of expression (47) will in practice be far less difficult than it looks. Suppose, 
for example, that we were interested in the electrodisintegration of 6Li into a &He nucleus 
and a deuteron. Letting A be &He and B be the deuteron, we have immediately 

J A ’  = J A  = J A  = 0, J B ’  = J B  = J B  = 1, Y. = (I: = 1 
Tl(l)(A; JA’JA) = Tl(’)(A; 00) = 0 unless I = 0 
T1(l)(B; JB’JB) = Ti(I)(B; 1, 1) = 0 unless I = 0, 2 

If the final state of 4 labelled by J A ’  does not contribute to the initial state of the 
and evaluation of the 6-j and 9-j symbols is easy. 

nucleus, 

and so only the first term in (47) can be non-zero, and then only if B is in the same state 
before and after the reaction. Thus at least one of the fragments does not change its state 
in the reaction. 

The  reduced matrix elements Tl( I ) (A;  JA‘JA) are exactly the same as those which appear 
in the longitudinal form factor for electron scattering from a ‘nucleus’ A, when it makes 
the transition from initial state J A  to final state JA’, and similarly for TiC1)(B; JB’JB). These 
matrix elements have been studied in detail (e.g. see de Forest and Walecka 1966). 

Roughly speaking, the first term in equation (47) corresponds to scattering of the elec- 
tron from A with simultaneous disintegration of the nucleus, while B is unaffected. The 
‘nucleus’ A may be excited in this process, and may indeed itself disintegrate. In  the 
second term, 4 is the spectator, while the scattering is from B. The  third and fourth terms 
are interference terms, which only contribute if the final states of both A and B occur in the 
initial state. 

Finally, if A is a single nucleon and we ignore all but the direct interaction term, which 
is the first term in (47), it is easy to verify that the expression reduces to  give the longitudinal 
form factor already used in I. 

8jajAt = 8 j A r j a  = 0 
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When we return to equation ( 3 3 ) ,  it is clear that the reduced matrix elements T,(3)(LZ) 
and T,(4)(LZ) can be split up to give expressions similar to (43), and that the summations 
over If, X and K' may be performed as above. An expression resembling (47) may thus be 
obtained for the part of ( 3 3 )  which we have not considered in detail, but the above remarks 
will apply to it as well as to (47). 

We shall now indicate briefly how the cross section is obtained from the above expres- 
sions. Denoting the set of quantum numbers {YAJAYBJB; E ;  y J >  by S, we may write the 
initial state as 

[ I ;  Ji) = 2 A(S; I )  IS; Ji}. 
S 

Additional quantum numbers yA, yB, y may be inserted in (47) by replacing T1(I)(.A; JA'JA) 

by Tl( I ) (A;  yA.'JA'yAJA) etc., and by replacing aJAtJA by ,ayAtyA 8jAtjA etc. We denote this 
extended version of E by E(S, 8). Then the contribution to the cross section from the 
longitudinal part of the operator is, by the Fermi golden rule, 

The  cross section is differential in the direction R, and energy kf of the scattered electron. 
The factor 474qu2 converts the operator H' into the interaction Hamiltonian, , f(q2) is the 
nucleon form factor, and the factor 25, + 1 comes from averaging over angular momentum 
states of the initial nucleus. The  factor + comes from averaging over the spin states of the 
incident electron beam, and the k,2/(27;)3 from the density of states of the scattered elec- 
trons, The  factor pN(Ef) is the density of final states of the nuclear system. 

The Mott cross section for the scattering of an electron from a point charge is 

4a2kf2 cos2 40 
ojq = 

41L4 
and so we may write 

where 

LL'll' 

Using this expression, we may hope to determine the amplitudes A ( S ;  I ) ,  which tell us 
how well the ground state is described by two clusters interacting with each other to form 
the state S. 

6. Single-nucleon emission 
As stated in the introduction, the main purpose of this paper is to try to give a better 

description of the quasi-elastic peak, which is largely due to single-nucleon emission. 
Equation (47) can be adapted for single-nucleon emission by letting JA = JA = J = 1 
and inserting values of Ji, JB etc. appropriate for a particular nucleus. Then the 3-j, 6-j 
and 9-j symbols of equation (47) may be readily evaluated. Since fragment A now contains 
only one nucleon, there is only one internal coordinate in A, x1 = 0. Hence 

A 2  

from equation (37) .  Matrix elements of the type T1C1)(B; J B ' J B )  may be evaluated in a 
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harmonic oscillator model, for example, and the matrix elements TL(l)(a; J 'J )  may be 
evaluated using, say, a harmonic oscillator interaction between the fragments in the initial 
state and a square-well interaction between them in the final state. However, as found in I, 
matrix elements of this type may be approximated by using a plane-wave final state, and 
adjusting the relative momentum of the fragments to simulate the effects of an interaction 
potential. This procedure simplifies the numerical work considerably, and will be adopted 
here. T o  carry out this approximate calculation, it is easier to return to the operator H' 
given in equation (16) than to use equation (47). 

If cluster -4 contains only one particle, then in equation (15) 

X I  = 0) x1 = 0 
r = r l - R A - 1 -  

We may combine the longitudinal part of the current operator of equation (16) with the 
scalar term as in equation (37),  or directly using the conservation of nuclear current (de 
Forest and Walecka 1966). Then from (15) H A '  becomes 

and from (16) 

where the transverse component vT of a vector ZI is perpendicular to q :  

H B '  can be written 

A A  

vT = u-g(ZI . g ) .  

The first part of equation (5 1) in square brackets is exactly the same as the interaction used 
in I. The second part of (51) consists of the terms which were neglected in I. 

We now change our notation slightly, and let A be the atomic number of the original 
nucleus. For brevity, we consider only the longitudinal part of the operator (51) which 
becomes 

Matrix elements of the first part of the operator may be found easily : they are the ones used 
in I. The  second part of the operator is slightly more difficult to use, since it involves both 
r and the coordinates xi = ri--RA-.l. For the part of the operator in square brackets, we 
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use the prescription discussed in 4 4: we replace x, by I , ,  use the harmonic oscillator model 
to evaluate the matrix elements, and finally multiply by 

P2 
exp{4(A - 1) k) 

according to the result of Tassie and Barker (1958). Here, k, is the oscillator constant for 
the 'nucleus' of A - 1 particles. 

Let li) and If) represent the initial and final states of the ejected particle. Then the 
matrix element of HL' of equation (53) is 

The  sum is over all occupied single-particle states of the residual nucleus, which are 
assumed orthogonal to li}, as is usual in a model such as the one we are using (Do Dang 
et al. 1968). The last term comes from antisymmetrization, and we have supposed that 
the residual nucleus does not change its state in the reaction. 

Calculations have been carried out for 12C, which was also discussed in I. For example, 
when an s-shell proton is emitted, the matrix element of (53) is 

2 - ~- q2 5 - - -  2q2 
4k, A-1  { ii: 3A(kk,)lt2 3(kk,)1'2 

The  oscillator constant for the wave function of the relative coordinate is k. T o  obtain the 
cross section, we must take the square of the modulus of this matrix element and integrate 
over directions of p .  As in I, the calculations were compared with the experimental results 
of Bounin and Bishop (1961). In  this experiment, electrons of energy 194n~ev were 
scattered at 135" from 12C. Under these conditions the momentum of the emitted proton 
increases from 0 at the threshold for disintegration to about 2 fm-l at the high-energy tail. 
Since q is approximately constant over the whole peak, with value 1.4, q/12 N 0.1, 
and so exp(- ( p  + q/A)2/2k}- exp( -p2/2k)  over a large part of the quasi-elastic peak, and 
exp( -q2/4k) - 0.18. Hence the contribution to the matrix element from the indirect 
processes is largest near the low-energy transfer end of the quasi-elastic peak, and becomes 
smaller as the energy transferred increases. The  same comments apply to the other matrix 
elements which are required to give the complete cross section. These features are clearly 
seen in the results which are presented below. 

7. Results and conclusions 
In figure 1 the cross section for single-nucleon emission is shown on the assumption 

that there is no interaction between the emitted particle and the residual nucleus. Curve B 
was obtained by using the Hamiltonian of equation (Sl) ,  while curve A was obtained by 
keeping only the direct terms of (Sl) ,  and is the same as curve A of figure 3 of I. It can be 
seen that the cross section is in fact decreased by using the complete Hamiltonian. The  
magnitude of the effect is appreciable, though not nearly large enough to  give agreement 
with experiment. Recalling that the peak in the cross section occurs when p N q, we see 
that the cross section is decreased for p < q,  and practically unaltered for p > q. The 
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actual maximum value of the cross section at p 1: q is only decreased by about 3 %, although 
the correction is more important for p < q. The position of the maximum in B is slightly 
different from that in A, but only by about 2 MeV. 

The actual magnitude of these corrections is determined to a large extent by the factor 
exp[-(q2/4k,)((A-2)/(A-1)}] N 0.18, the effect of which is largest when q and A 
are small. Transitions in which the residual nucleus changes its state have not been con- 
sidered at all, but since they lead to different final states, they cannot interfere with the 
process considered here, and so will increase the cross section, making agreement with 
experiment even worse. Since the cross section for these processes will contain the factor 
(exp[ - (q2/4kc)  x ((A-Z)/(A - 1)}])2 1: 0.03, they are expected to contribute very little to 
the cross section. 

Figure 1. The quasi-elastic peak for “T calculated as described in the text. The units 
of cross section are cm2 sr-l  h1ev-l. 

As discussed in I, the introduction of an effective potential to  describe the interaction 
betvieen the emitted nucleon and the residual nucleus hardly alters the shape of the spectrum 
but moves it bodily to the region of lower energy transfer. Calculations have been per- 
formed for several potentials, and the corrections which result from using the complete 
Hamiltonian are very similar to those shown in figure 1. They mill therefore not be pre- 
sented here. 

The calculations on single-nucleon emission show that the indirect terms give small, 
though not negligible, corrections to the cross section. This implies that in the emission of 
larger fragments, the corrections will be important for light nuclei and small values of q. 

Agreement with experiment (Bounin and Bishop 1961) is improved slightly by intro- 
ducing indirect interactions, but it is still not very good. The results of Czyi (1963) are 
much better than those presented here. The reason for this is that, in the Fermi gas model 
with harmonic oscillator momentum distribution used by C z y i ,  there is a fairly large 
probability that the high-momentum states into which it is kinematically possible for the 
nucleons to be emitted are already filled. Since this would violate the Pauli exclusion 
principle, the cross section is diminished, and by a considerable amount. Under the 
experimental conditions considered above, the cross section is reduced to about half by 
the Pauli principle, and the free nucleons have energies of about 50 xqev at the peak. This 
seems rather unreasonable, and there is probably some other reason for the cross section 
being smaller than is calculated above. Recently, Ciofi degli Atti (1968) has found that 
short-range dynamical correlations can have a large effect on the elastic electron scattering 
form factor, even at momentum transfers as low as 1.5 fm-l. This being the case, the quasi- 
elastic scattering cross section may be considerably diminished by short-range correlations. 
Preliminary calculations indicate that this is indeed the case, and a full description will be 
published when more results are available. 
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Appendix 
The following summations are necessary to derive equation (33): 
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